Low-Cost IAQ Monitors: Do you get what you pay for?

Brett Singer and Woody Delp Lawrence Berkeley National Laboratory

Sydney Roberts

Southface Energy Institute

2017 RESNET CONFERENCE
Scottsdale AZ
28-Feb-2017

Acknowledgements

- US Dept. of Energy Building America Program
- US Dept. of Housing & Urban Development Office of Healthy Homes
- US EPA Indoor Environments Division
- US DOE Semester Undergraduate Laboratory
 Internship Program Lauren Lawson Fall 2016

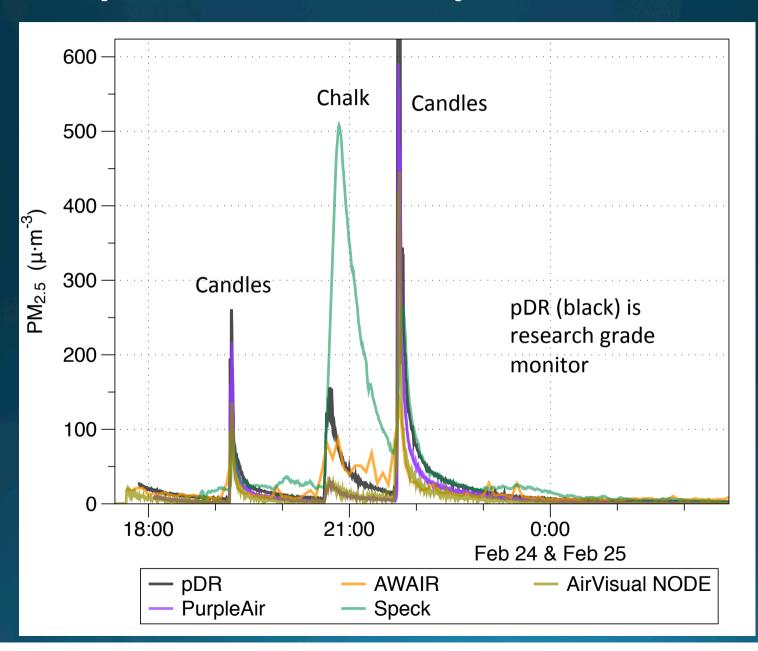
How do you rate the indoor air quality in your home?

- Excellent or very good
- Good / almost always acceptable
- Sometimes not acceptable
- Frequently not acceptable

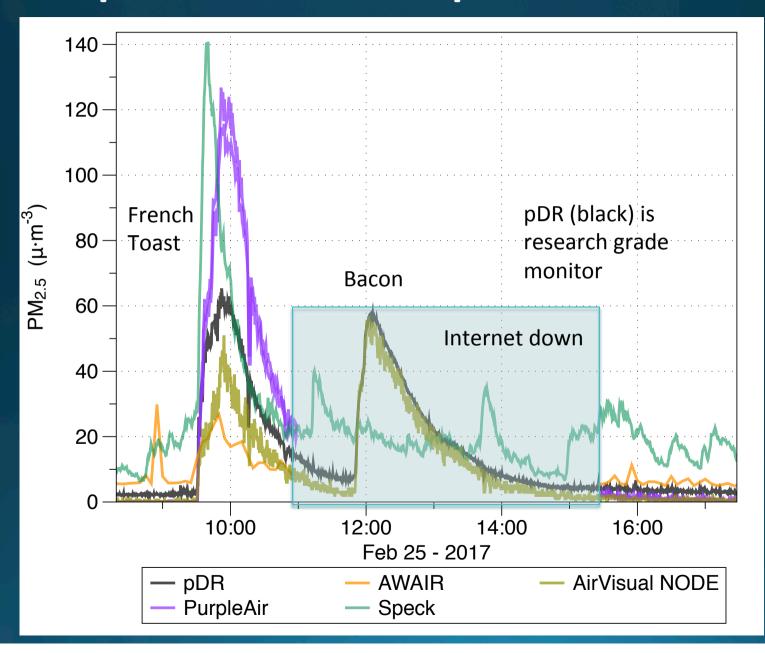
What is the biggest problem or risk to indoor air quality in your home?

What is good indoor air quality?

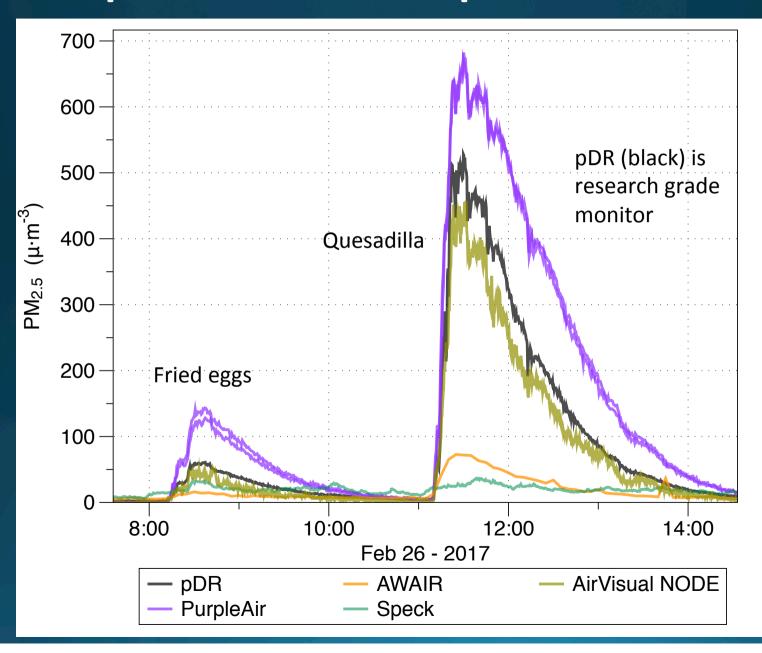
- No unpleasant odors
- Air seems "fresh" and pleasant
- Comfortable temperature and humidity
- Allergens minimized
- No dampness or mold issues
- Pollutant concentrations at safe levels



Why do we need IAQ monitors?


- Measure things we can't perceive
- Early warning of hazard
- Closed loop control

- Data to evaluate controls or pre / post retrofit
- Track system performance over time


Example data low-cost particle monitors

Example data low-cost particle monitors

Example data low-cost particle monitors

- Temperature and humidity
- CO₂ for demand control ventilation
- Total VOC
- Odors

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

- Temperature and humidity
- CO₂ for demand control ventilation
- TVOC
- Odors

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

- Temperature and humidity
- CO₂ for demand control ventilation
- TVOC
- Odors

People detect these easily

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

- Temperature and humidity
- CO₂ for demand control ventilation
- TVOC
- Odors

Nothing accurate and affordable is available

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

- Temperature and humidity
- CO₂ for demand control ventilation
- VOCs
- Odors

Can detect relevant levels, but expensive and requires frequent calibrations

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

- Temperature and humidity
- CO₂ for demand control ventilation
- VOCs
- Odors

Relatively inexpensive time-integrated tests available

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

- Temperature and humidity
- CO₂ for demand control ventilation
- VOCs
- Odors

Inexpensive sensors available, accurate enough and durable (2+y)

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

- Temperature and humidity
- CO₂ for demand control ventilation
- VOCs
- Odors

Inexpensive sensors available and accurate enough; durability uncertain

- Indoor pollutants
 - PM_{2 5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

- Temperature and humidity
- CO₂ for demand control ventilation
- VOCs
- Odors

Inexpensive and accurate enough sensors being used for research

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

- Temperature and humidity
- CO₂ for demand control ventilation
- VOCs
- Odors

Inexpensive
Available, but costly
Coming soon

- Indoor pollutants
 - PM_{2.5}, PM₁₀, ultrafines
 - Acrolein, NO₂, CO
 - Formaldehyde, radon
 - Irritants
 - Allergens
- Outdoor pollutants
 - Diesel PM / black carbon
 - Ozone
 - PM_{2.5}, PM₁₀, ultrafines, NO₂
- Dampness & mold

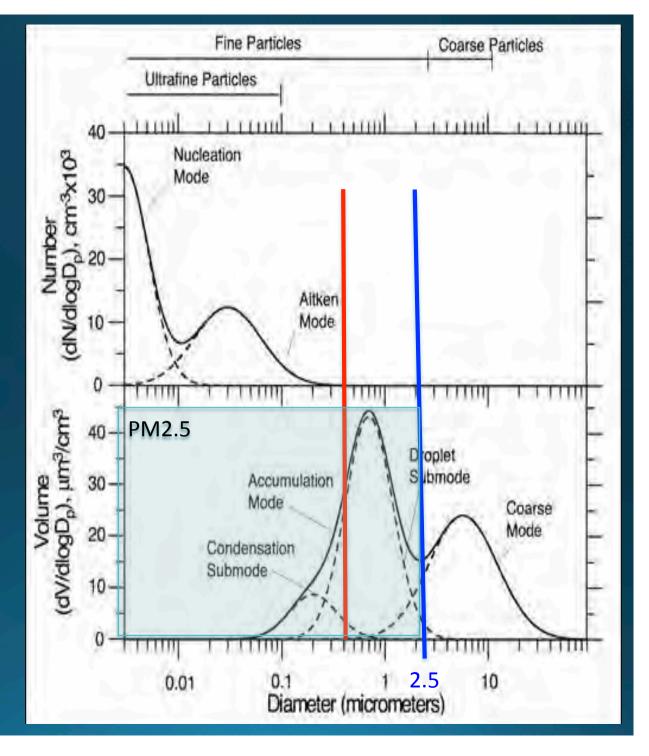
What's available to measure home IAQ?

What's available to measure home IAQ?

Device	Price	Temp	RH	CO ₂	VOC	PM _{2.5}	PM ₁₀	СО	Ozone	NO ₂
Birdi (NA)	\$119									
Koto Air Cubes	\$139									
Netatmo	\$149									
Speck	\$149									
Airmentor	\$183									
Awair	\$199									
BlueAir-Aware	\$199									
Foobot	\$199									
Air Quality Egg	\$280									
Dylos-DC 1100	\$290									
uHoo (NA)	\$299									

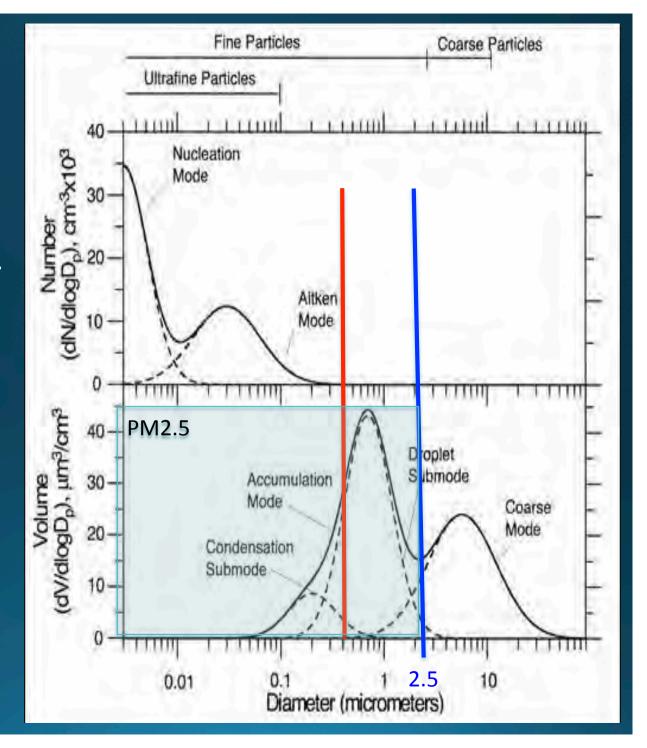
Is the specified range relevant?

Device	Price	Temp	RH	CO ₂	voc	PM _{2.5}	PM ₁₀	СО	Ozone	NO ₂
Birdi (NA)	\$119	•	•	•	•	•				
Koto Air Cubes	\$139			•						
Netatmo	\$149									
Speck	\$149									
Airmentor	\$183			0	0			0		
Awair	\$199									
BlueAir-Aware	\$199			0		0	<u> </u>			
Foobot	\$199									
Air Quality Egg	\$280									
Dylos-DC 1100	\$290									
uHoo (NA)	\$299					•			•	



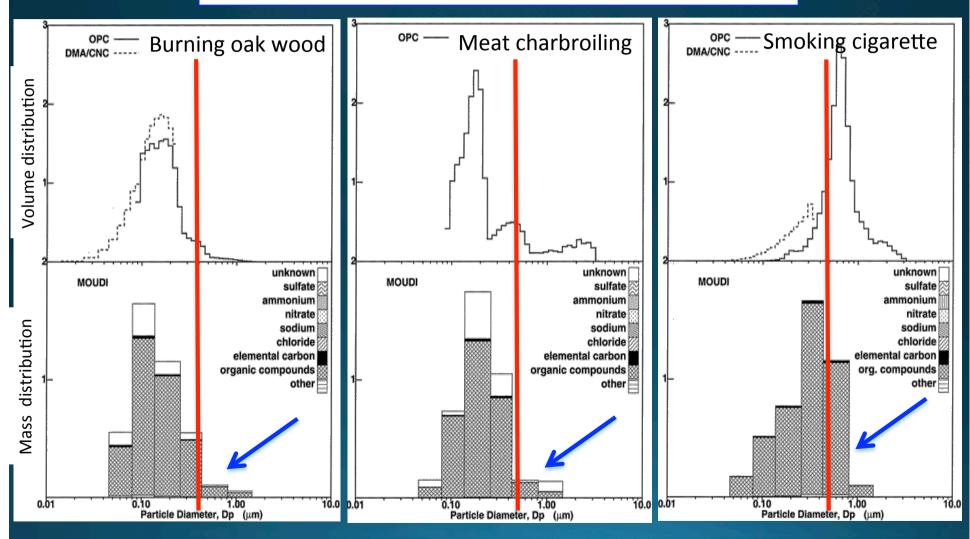
Credit: Lauren Lawson

Particles 101


- "Particulate matter" or PM is comprised of particles with varied size & composition.
- Composition varies by source & changes w/ environment.
- Can describe PM by mass, volume or number of particles in volume of air.
- PM_{2.5} is the mass concentration of particles smaller than 2.5 um diameter.

Source: NARSTO (2004)

Particles 101


- Many low-cost sensors only see larger particles, e.g.,
 >0.5 um or >1 um.
- Some see particles <0.3 um.
- They estimate total PM based on what they see.
- Some sensors only provide particle counts. Some provide estimates of PM_{2.5}

Source: NARSTO (2004)

Particle mass distribution varies by source Many indoor sources mostly <0.5um

Low cost sensors see only the part to right of red line

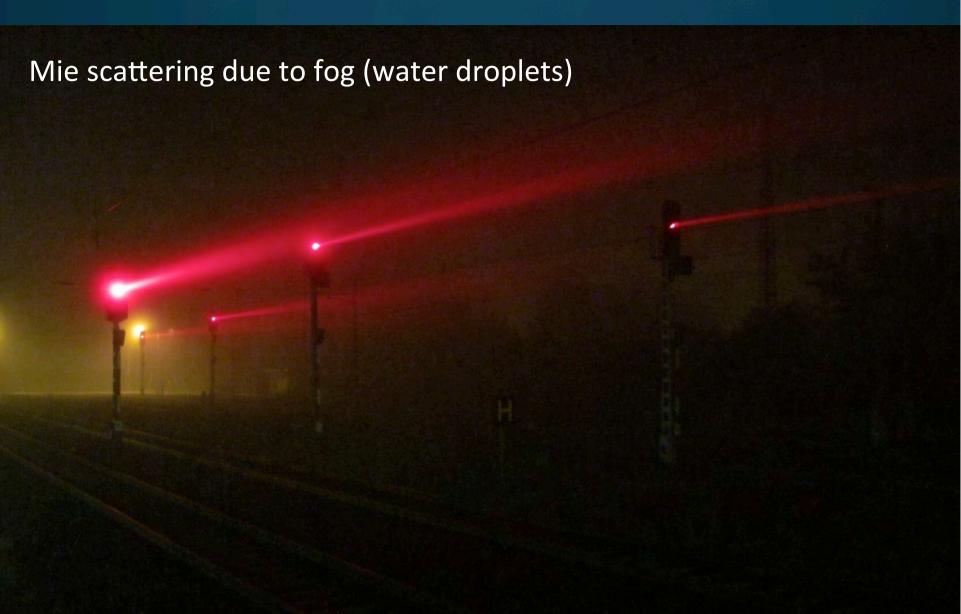
Multiple ways to measure PM

Collect on a filter

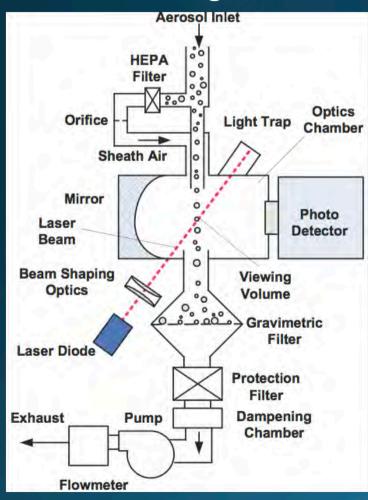
Integrated number (hours – day)

- Beta-attenuation
- Real-time micro balance
- Optical methods
 - Scattering
 - Laser particle counters

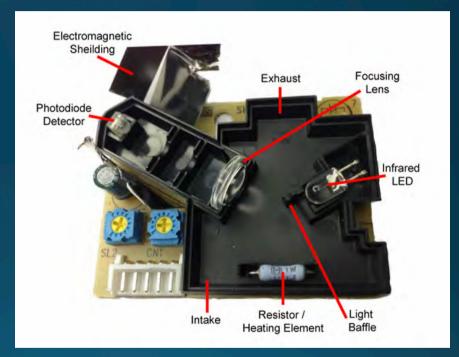
Real-time (seconds – hour)


Research devices: \$1000s to >\$10K

Laser-based particle counters



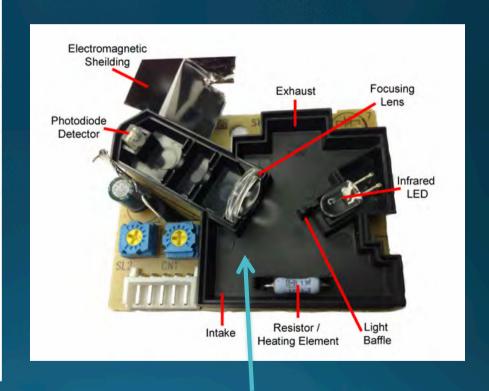
- Is like looking out a narrow doorway
- Something passes by and blocks the doorway generating a pulse
- Longer / bigger pulse is a bigger particle



Research grade

Low cost device

Bare sensor OEM pricing \$4 - \$15

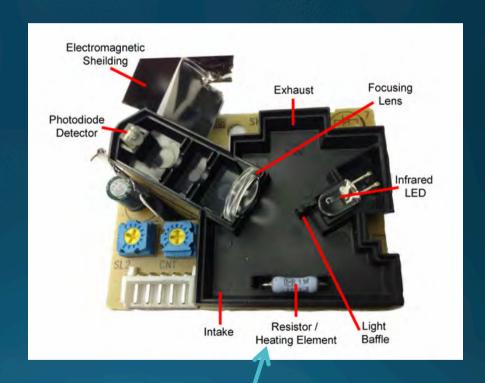

OEM pricing \$100s

Research grade

Aerosol Inlet Optics Light Trap Orifice Chamber Sheath Air Photo Laser Detector Beam Beam Shaping Viewing Optics Volume Gravimetric Filter Laser Diode Protection Filter Dampening Exhaust Pump Chamber Flowmeter

Machined housing Close tolerances

Low cost device

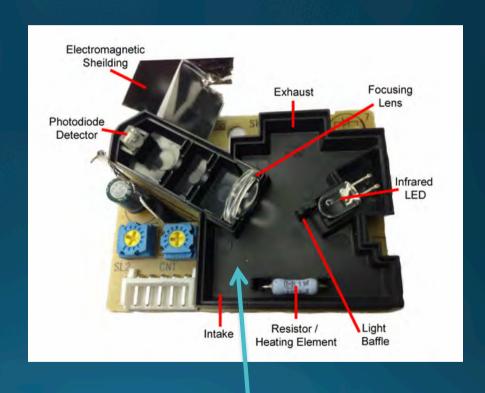

Molded plastic housing Tolerances?

Research grade

Aerosol Inlet Optics Light Trap Orifice Chamber Sheath Air Photo Laser Detector Beam Beam Shaping Viewing Optics Volume Gravimetric Filter Laser Diode Protection Filter Dampening Exhaust Pump Chamber Flowmeter

Pump for controlled flows

Low cost device


Heater induces a flow through the device Control?

Research grade

Aerosol Inlet Optics Light Trap Orifice Chamber Sheath Air Photo Laser Detector Beam Beam Shaping Viewing Optics Volume Gravimetric Filter Laser Diode Protection Filter Dampening Exhaust Pump Chamber Flowmeter

Sheath flow keeps the optical chamber clean

Low cost device

Optical chamber gets loaded with dust, potentially changing the flow and response

Packaged devices ~\$200

- A pleasing box that may have a display or glow according to the perceived IAQ
- May have additional sensors (CO₂, VOC, ...)
- Cloud storage

Possibility of controlling things

Build your own monitor (BYOM)

UPOD: Open source platform for mobile air quality monitoring

University of Colorado, Boulder

http://mobilesensingtechnology.com/

T, RH, P, CO₂, O₃, NO₂; slots for 4 e2v MOx sensors

 Open Source Building Science Sensors Illinois Institute of Technology

http://www.osbss.com/

T, RH, CO₂, Particles, delta-P, equilibrium RH, light state, proximity, occupancy

DIY / Maker offerings

 Perhaps a robust sensor, and the ability to do what you want

 A community is springing up offer parts lists and plans for devices

• ~\$50

Performance Considerations

Sensor Characteristics

- Sensitivity & accuracy
- Reliability & durability
- Stability
- Selectivity
- Fault detection

Device Characteristics

- Cost
- Smart home platform
- Data accessibility
- Data visualization
- Dashboard
- Ease of setup

How to check a monitor or sensor

- Multiple units side-by-side
- Deploy alongside or nearby to reference monitor
- Controlled experiments
 - Standard sources
 - Varied environmental conditions

This is most difficult for most users.

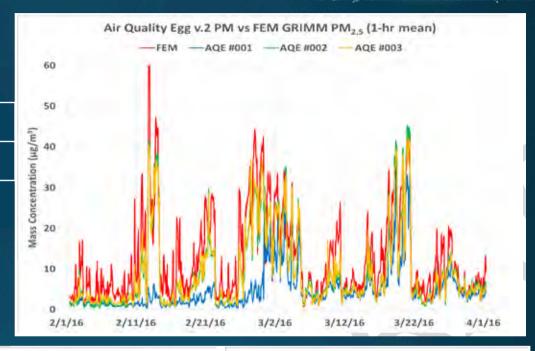
Need manufacturers and standards to ensure quality.

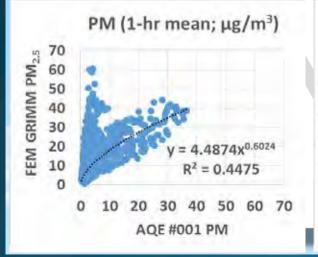
Do they work?

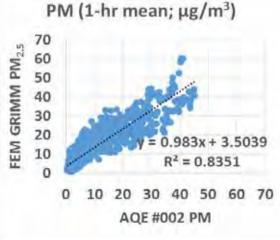
- EPA has done some work focusing on outdoors https://www.epa.gov/air-sensor-toolbox
- South Coast AQMD is working on outdoor and chamber tests http://www.aqmd.gov/aq-spec/home
- Carnegie Mellon has done some work and developed the SPECK

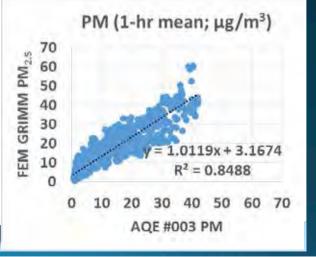
https://explorables.cmucreatelab.org/explorables/air-quality-monitor-tests/

 Air quality in China http://aqicn.org/sensor/

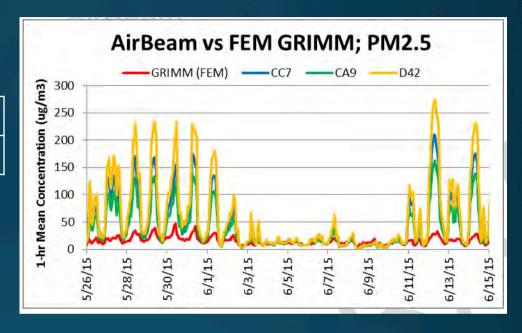

AirQuality Egg V2.0

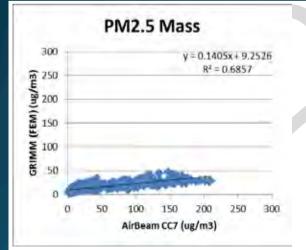


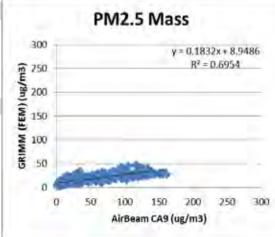

\$280 PM, T, RH

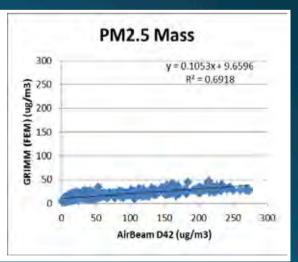

Cloud Storage	Yes
Devices	n/a


	52
Group	R ²
EPA	06 to 0.40
SCAQMD	0.79 to 0.85
CMU	0.72


AirBeam

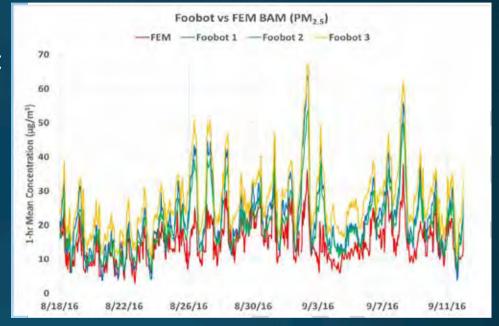


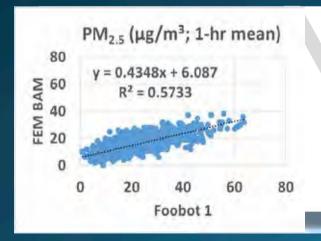

\$250 PM

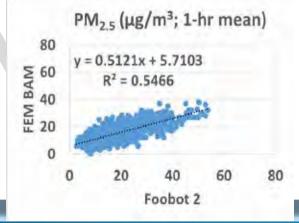

Cloud Storage	Yes
Devices	Android

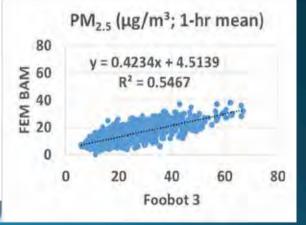
Group	R ²
EPA	0.65 to 0.66
SCAQMD	0.65 to 0.70
CMU	n/a

@ foobot

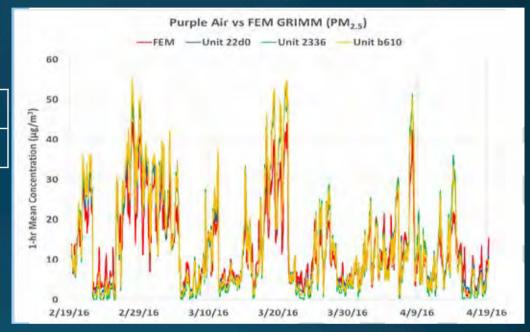

Foobot

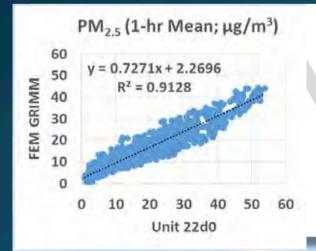


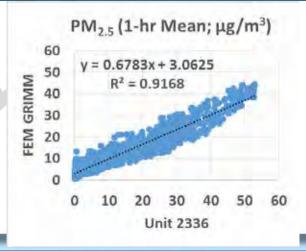

\$199 PM, T, RH, CO₂, CO, tVOC

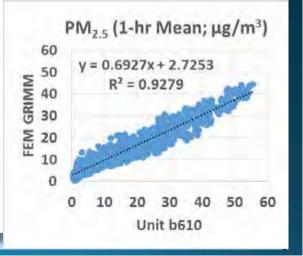

Cloud Storage	Yes
Devices	iOS, Android

	7,111,00
Group	R ²
EPA	n/a
SCAQMD	0.55
CMU	0.25

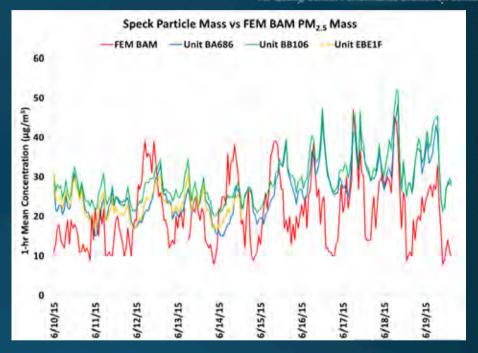

PurpleAir

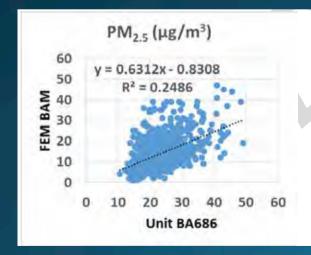


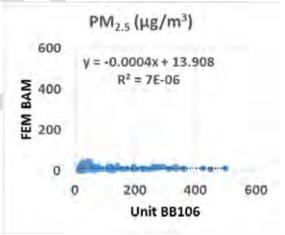

\$199 PM

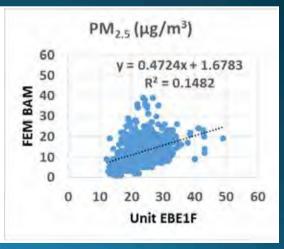

Cloud Storage	Yes
Devices	?

Group	R ²
EPA	n/a
SCAQMD	0.77 to 0.92
CMU	n/a

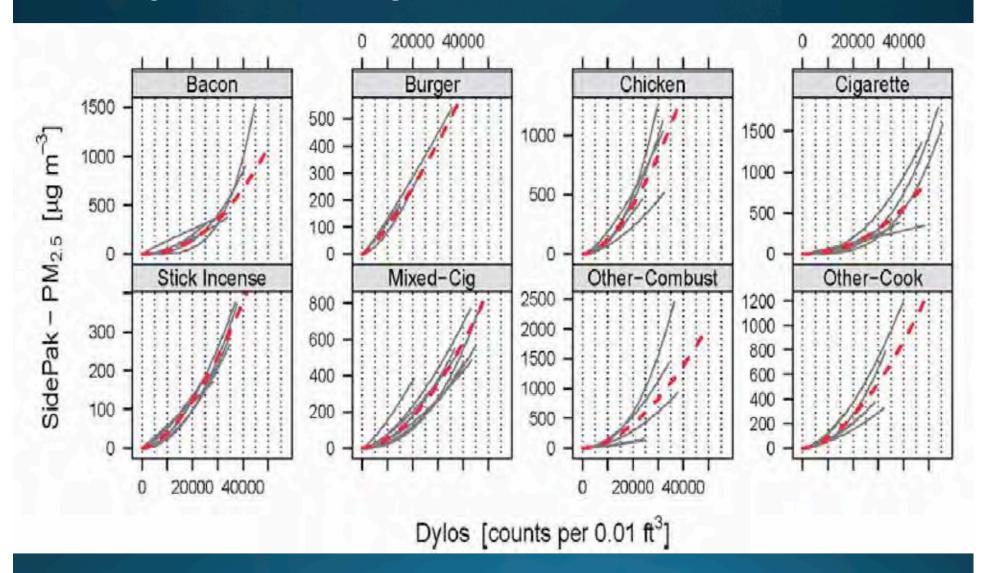

Speck V2.0

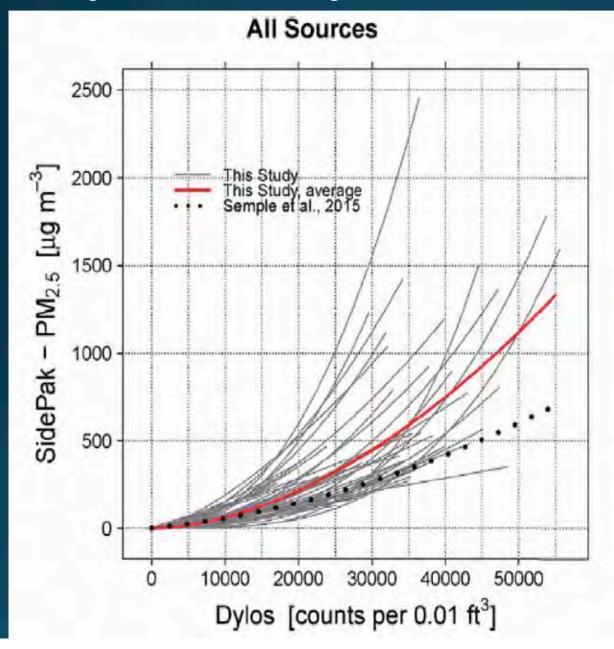



\$199 PM


Cloud Storage	Yes
Devices	iOS, Android

Group	R ²
EPA	0.01
SCAQMD	0 to 0.25
CMU	0.61





Responses vary for residential sources

Responses vary for residential sources

Dacunto (2015)

Yep. It's complicated.

Residential IAQ sensing – Feb 2017

- For many indoor sources, low-cost sensors cannot see the particles that comprise most of the mass.
- No low-cost sensors for ultrafine particles
- Target range for NO₂ is at low end of current sensor capabilities
 - The most common O₃ and NO₂ sensors are cross-sensitive
- Accurate CO₂ sensors cost \$80-200+; confirmed stability only at top of cost range. Lower cost units may be okay.
- VOC sensors mostly measuring compounds that are not harmful at environmental levels. Also calibration and failure issues.

Particle measurements - Feb 2017

- Many products available for under \$250
- Some appear to detect most significant indoor particle emission events. (Some don't). Useful for controls.
- Some can be used for semi-quantitative evaluation of improvements with control equipment. Most useful to compare when sources & environment are the same.
- Only a few appear to be sensitive and consistent enough to manage indoor exposures to outdoor particles.
- Without repeat calibration checks against reference instruments, none are good enough to make claims about improvements to PM_{2.5}.

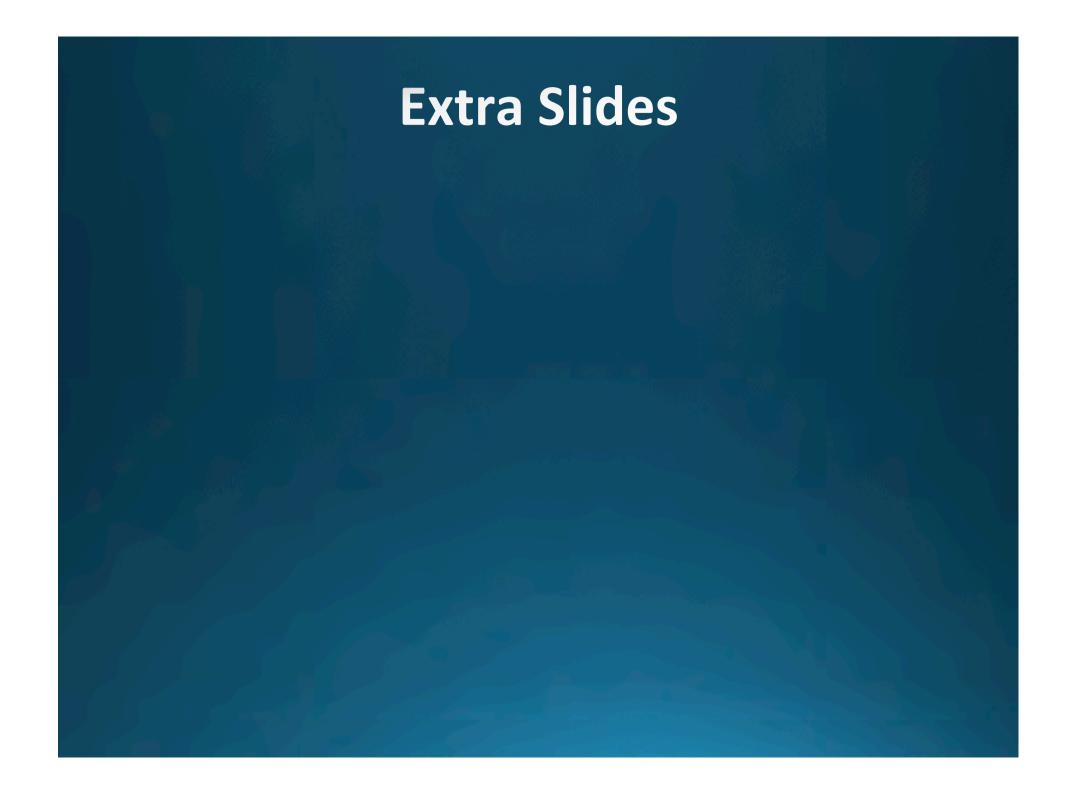
The Future: Sensor Improvements

- Low-cost PM mass sensors
- Improved NO₂ reliability & sensing of NO
- Lots of people working on selective VOC sensors including formaldehyde
- Low-cost sensor for diesel PM (black carbon) being tested now

Tough Questions

- What are the most important parameters to measure?
- What threshold(s) to use for controls?
- What monitor should I buy?
- Can I use one of these monitors to prove to a client that their IAQ is good?
- If the monitor says things are bad, what should I do?

Literature Cited


- Azimi, Zhao, Stephens. 2014. Estimates of HVAC filtration efficiency for fine and ultrafine particles of outdoor origin. *Atmos. Environ.* 98: 337-346.
- Dacunto PJ et al. 2015. Determining PM2.5 calibration curves for a low cost particle monitor... *Environ Sci. Proc. & Impacts, Online 10/15/2015.*
- Kleeman, Schauer, Cass. 1999. Size and composition distribution of fine particulate matter... *Environ. Sci. Technol.* 33: 3516-3523
- Long, Suh, Koutrakis. 2000. *Characterization of indoor particle sources using continuous mass and size monitors*. JA&WMA 50:1236-1250.
- NARSTO, 2004. Particulate Matter Science for Policy Makers: A NARSTO Assessment. P. McMurry, M. Shepherd, and J. Vickery, eds. Cambridge University Press, Cambridge, England. ISBN 0521842875.

LBNL working on bibliography of scientific papers of sensor performance.

Questions?

Brett C. Singer bcsinger@lbl.gov

Sydney Roberts sroberts@southface.org

